Introduction to Tomography

- Tomography is imaging by sections or sectioning. A device used in tomography is called a tomograph, while the image produced is a tomogram.
- The method is used in <u>medicine</u>, <u>archaeology</u>, <u>biology</u>, <u>geophysics</u>, <u>oceanography</u>, <u>materials science</u>, <u>astrophysics</u> and other sciences.
- In most cases it is based on the mathematical procedure called tomographic reconstruction.
- The word "tomography" is derived from the <u>Greek</u> tomos (slice) and graphein (to write).

Wickipedia

2021

Experimental Methods in Physics

Marco Cantoni

Introduction to Tomography

- (projection) Tomography is a method in which a 3-D structure is reconstructed from a series of 2-D projections (images) acquired at successive tilts (Radon 1917).
- First developed for use in medical imaging (1963, Nobel Prize for Medicine in 1979) using X-rays, ultrasound and magnetic resonance (e.g. 'cat-scans')...
- Found further application in geology, astronomy, materials science, etc...

P. Midgley, tomo workshop in Berlin

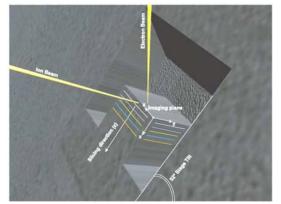
Introduction to Tomography

Recording

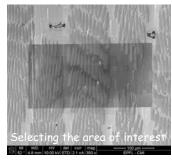
- Series of 2D images
 direct tomography:
 serial sections
 projection tomography
 projections in different
 diretions
- Destructive: serial sectioning, FIB, AP
- Non-destructive: X-rays, TEM

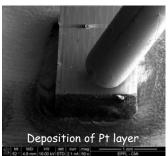
Reconstruction and « viewing »

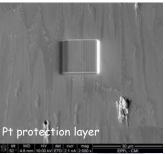
- Registration (alignment of images)
- Back-projection, reconstruction (tilt-series)
- Tomogram: stack of images
- Segmentation (image processing): extraction and visualisation of the desired information

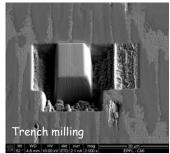

2021

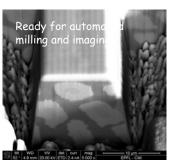
Experimental Methods in Physics

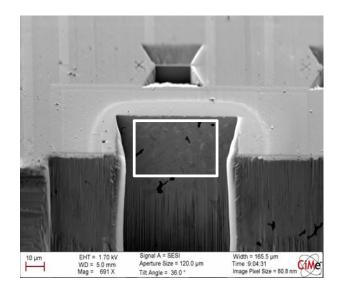

Marco Cantoni




Example: « direct » tomography FIB Nanotomography




The FIB as a 3-D microscope: Combine the milling possibility with imaging capabilities.



Marco Cantoni

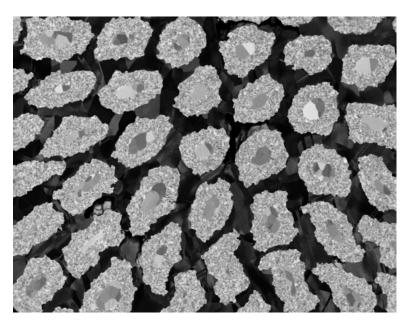
3D FIB/SEM: volume reconstruction

Nb₃Sn multifilament superconducting

Nb₃Sn superconductor multifilament cable: 14'000 Nb₃Sn filaments (diameter ~5um) in Cu matrix

Preparing for automated milling, selection of area of interest

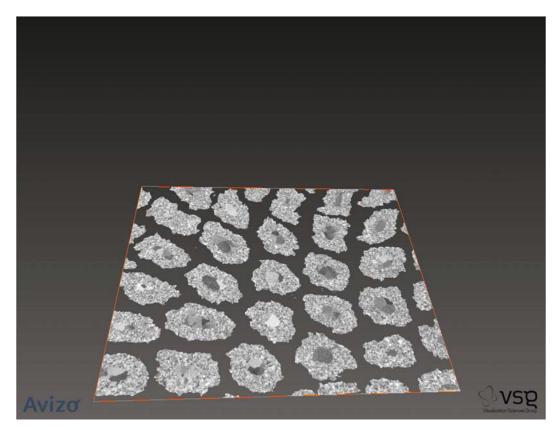
2021


Experimental Methods in Physics

Marco Cantoni

3D FIB/SEM: volume reconstruction

Nb_3Sn multifilament superconducting cable

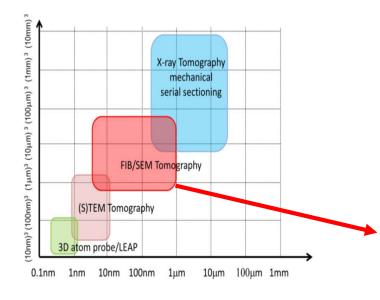


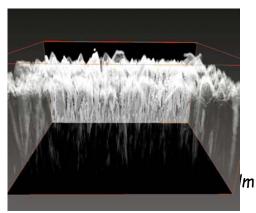
Nb₃Sn superconductor multifilament cable: 14'000 Nb₃Sn filaments (diameter ~5um) in Cu matrix

Finding the optimal imaging conditions

Materials & grain contrast 2048x1536x1700, (10x10x10nm voxel), 28hours

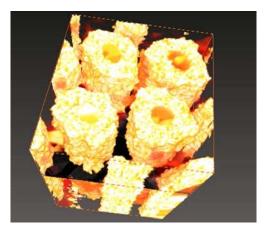
Experimental Methods in Physics

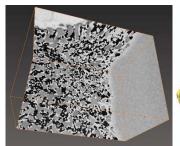

2021

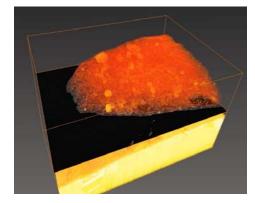

Marco Cantoni

FIB-NT compared with other 3D-techniques

- isotropic voxel size ~5-10nm
- Dwell time ~5-10μsec.
- 1 slice, image / min.
- HT: 1-2kV
- Escape depth of signal (BSE) ≤ 5nm




New possibilities in 3D-microscopy: Combination with quantitative analytical SEM techniques: EBSD, EDX


Focused ion beam

Nb3Sn superconductor filaments: 2048x1536 pixels, 1700 slices (10x10x10nm voxel), only small fraction shown

SOFC electrode material, (porous Ni-CGO anode) 2048x1536x1500, (12x12x12nm voxel)

FIB-Nanotomography

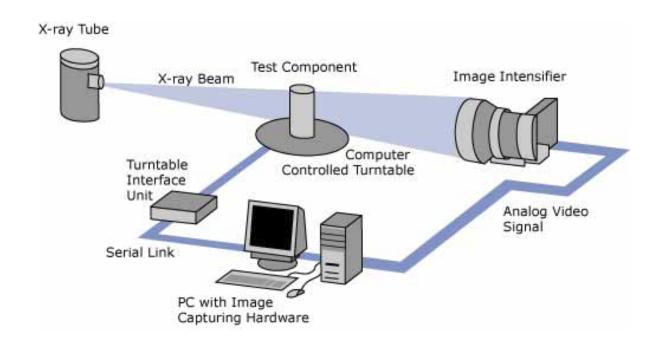
Cell on substrate: 2048x1536x600 (10x10x20nm voxel), 20x15x12 microns

2021

Experimental Methods in Physics

Marco Cantoni

3D imaging in medicine


- · Non-invasive methods are preferred!
- The disadvantage of conventional Xradiographs is its inability to discriminate between organs of close absorptivity or overlapping organs in the viewing direction.
- X-ray computed tomography overcomes that limitation:
- X-radiographs are made in many different directions and combined mathematically to to reconstruct cross-sectional maps.
- reconstruction tomography or computer assisted tomography.

Tomograph

Experimental Methods in Physics

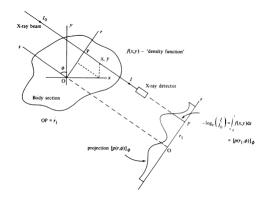
Marco Cantoni

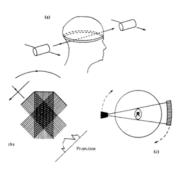
Radon 1917

Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten.

Voc

JOHANN RADON.


Integriert man eine geeigneten Regularitätsbedingungen unterworfene Funktion zweier Veränderlichen x,y— eine Punktfunktion f(P) in der Ebene — längs einer beliebigen Geraden g, so erhält man in den Integralwerten F(g) eine Geradenfunktion. Das in Abschnitt A vorliegender Abhandlung gelöste Problem ist die Umkebrung dieser linearen Funktionaltransformation, d. h. es werden folgende Fragen beantwortet: kann jede, geeigneten Regularitätsbedingungen genügende Geradenfunktion auf diese Weise entstanden gedacht werden? Wenn ja, ist dann f durch F eindeutig bestimmt und wie kann es ermittelt werden?


Ber. Sächs. Akad. Wiss. Leipzig, Math. Phys. Kl. 69, 262 (1917) English translation in: Deans, S.R. (1983) The Radon transform and its applications. John Wiley & Sons, NY)

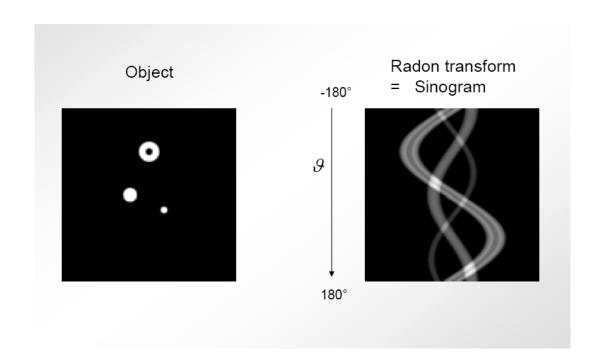
2021

Radon Transform

The paper defines the Radon transform R as the mapping of a function f(x,y), describing a real space object D, by the projection, or line integral, through f along all possible lines L:

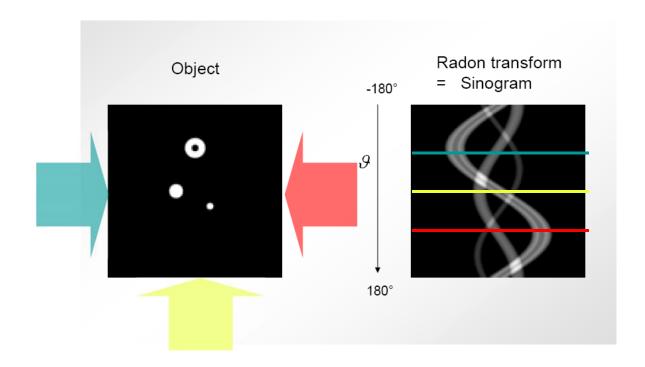
$$Rf = \int_{L} f(x,y) ds$$
,

A discrete sampling of the Radon transform is geometrically equivalent to the sampling of an experimental object by some form of transmitted signal: a projection. The consequence of such equivalency is that the reconstruction of an object f(x,y) from projections Rf can be achieved by implementation of the inverse Radon transform


2021

Experimental Methods in Physics

Marco Cantoni

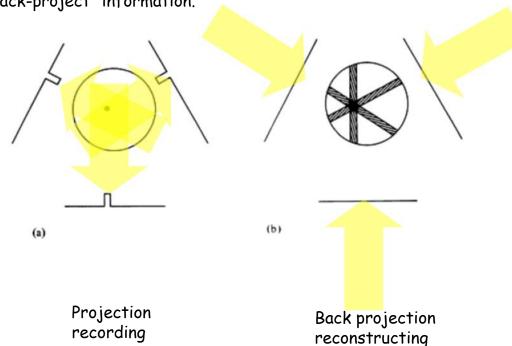


Radon Transform

Radon Transform

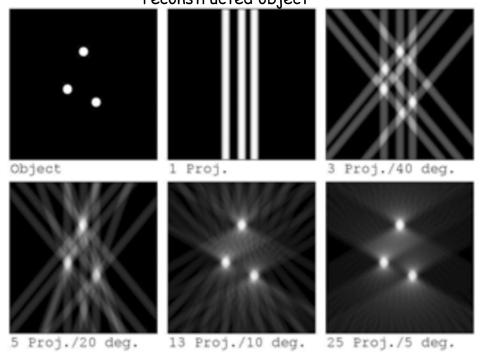
2021

Experimental Methods in Physics


Marco Cantoni

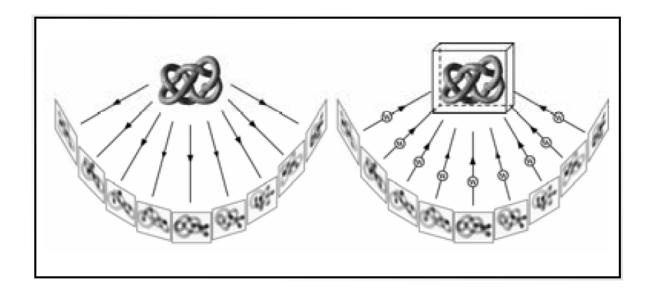
Back projection

"Reversing" of the projection process: usong the projected signal to


"back-project" information.

Back projection

The higher the number of projections the better will be the reconstructed object



2021 Experimental Methods in Physics

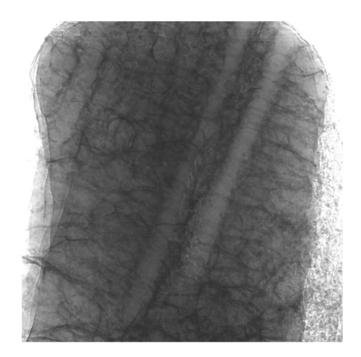
Marco Cantoni

back projection

Tomography in medicine

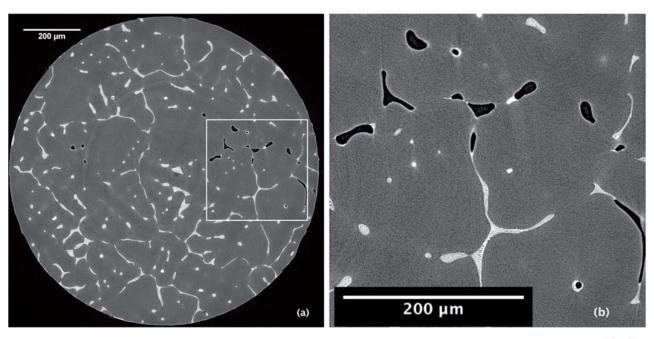
2021

Experimental Methods in Physics


Marco Cantoni

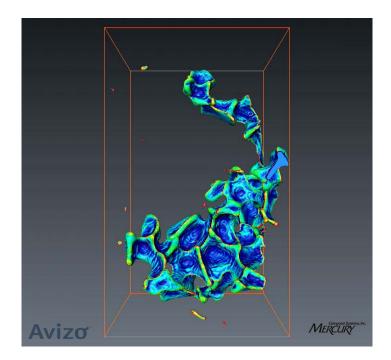
3D imaging in materials science

360degree X-ray tomography Milan Felberbaum STI-IMX-LSMX


Cylinder of an Al-Cu Alloy

3D imaging in materials science

Tomogram


2021 Experimental Methods in Physics

Marco Cantoni

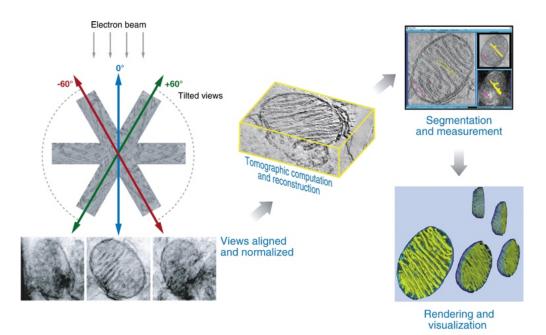
3D imaging in materials science

Reconstructed pore

Tomography with electrons higher resolution but lower penetration...

Stopping range for electrons (99% absorbed)

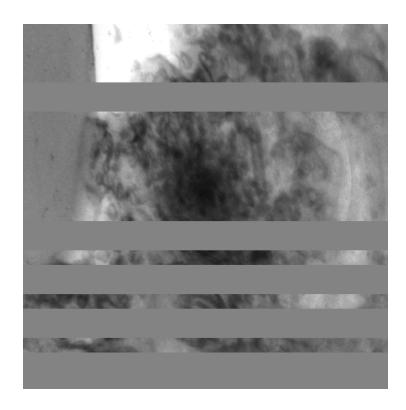
Element (specific weight)	4-Be 1.84 g/cm³	13-Al 2.7 g/cm ³	29- <i>C</i> u 8.93 g/cm³	82-Pb 11.3 g/cm ³
X-rays Cu-Kα λ=1.54 Å Mo-Kα λ=0.71 Å	16 mm 83 mm	0.35 mm 3.3 mm	0.10 mm 0.10 mm	0.017 mm 0.034 mm
Neutrons A≈1.08 Å	89 m	6 m	0.26 m	14 m
Électrons 1=0.037 Å à 100 kV 1=0.020 Å à 300 kV	39 μm	42 μm ~330 μm	11 <i>μ</i> m	0.6 <i>μ</i> m


2021

Experimental Methods in Physics

Marco Cantoni

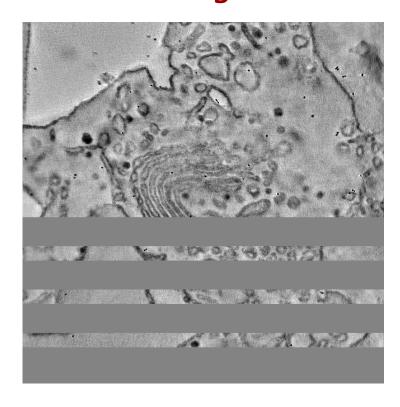
Bio-EM, Tomography



Frey TG, et al. 2006.

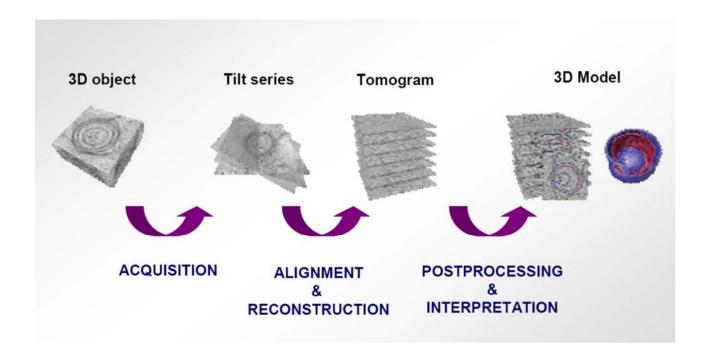
 ${
m R}$ Annu. Rev. Biophys. Biomol. Struct. 35:199–224

Tilt series, -60 ... +60 degree tilt



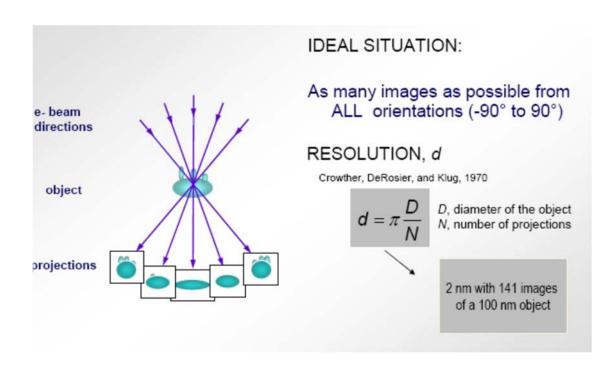
2021 Experimental Methods in Physics

Marco Cantoni



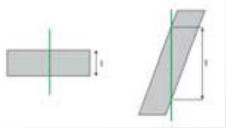
Tomogram

Tomo workflow


2021

Experimental Methods in Physics

Marco Cantoni


resolution

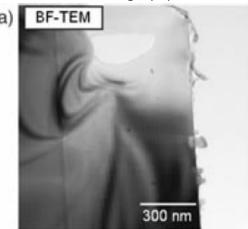
geometrical limit, the missing wedge

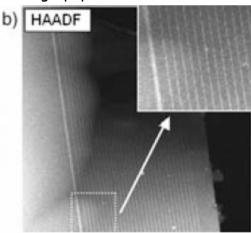
- There is a limit in the tilt angle we can reach (~±70°) due to:
 - Design of the holder
 - Grid bars
 - Increasing thickness of the specimen with high tilt angles

 This is known as the missing wedge problem (missing information, loss of resolution)

2021

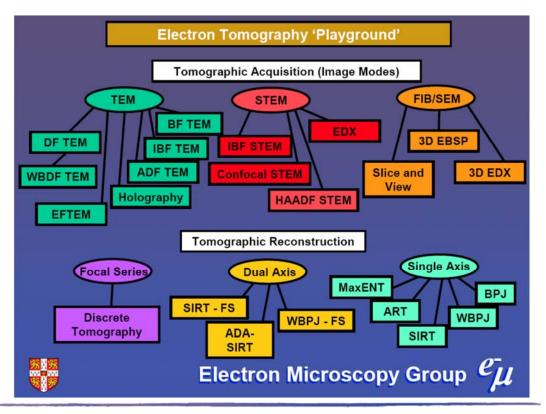
Experimental Methods in Physics


Marco Cantoni


projection requirement

 projection requirement: monotonically varying function of a physical property: mass-thickness dominant in biological samples!

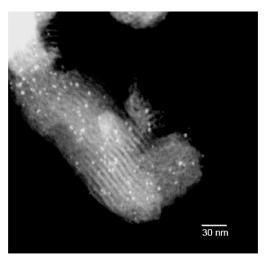
Diffraction contrast of crystalline samples in bright field TEM not suitable for Tomography


Z-contrast in STEM (HAADF): Mass-density contrast, suitable for tomography

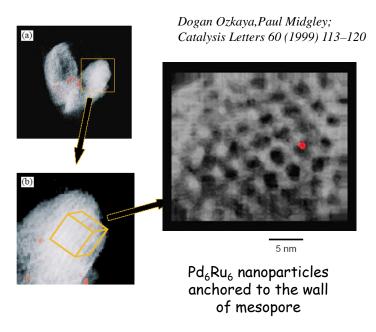
Si-Ge multiple quantum well structure

Tomography in Electron Microscopy

From P. Midgley


Me

2021 Experimental Methods in Physics


Marco Cantoni

Tomography with HAADF (z-contrast)

nanoparticle bimetallic catalysts supported on mesoporous silica

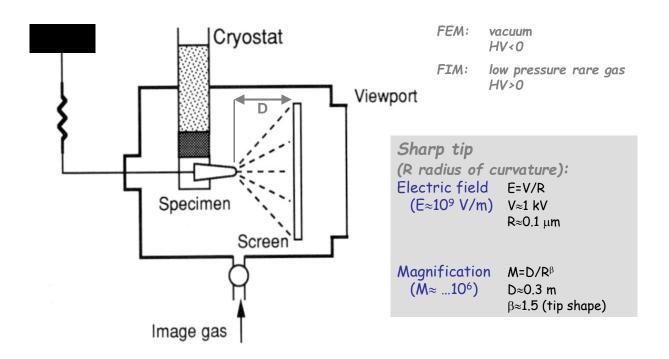
STEM HAADF: heterogeneous catalyst composed of Pd_6Ru_6 nanoparticles (~ 1 nm) on mesoporous silica support with mesopores of ~ 3 nm diameter.

Electron Tomography in materials science

- Acquisition and alignment of 2x71 tilted images
- · Back-projection: missing wedge
- Projection requirement (image contrast)
- Thickness limitation (samples rather thin)
- ...
- ...

2021 Experimental Methods in Physics

Marco Cantoni



Advanced 3D Technique

Atom Probe Tomography

Field emission (electron, ion) microscopy

2021

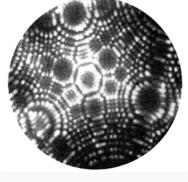
Experimental Methods in Physics

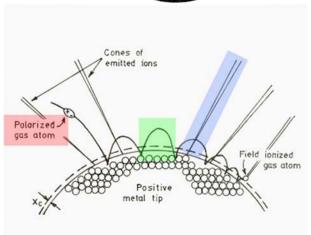
Marco Cantoni

Field Ion Microscopy Gas Field Ionisation Source (GFIS)

- atoms (molecules) are trapped by polarizations forces
- Trapped atoms hop on the surface until they are ionised

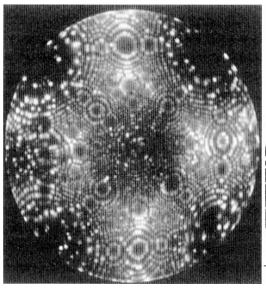
Ionisation: tunnelling process with probability D:

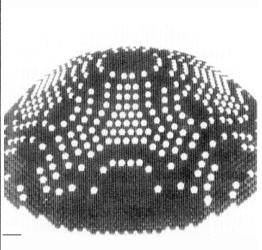

D
$$\alpha$$
 e $\frac{-c(I-\Phi)}{V}$


I : Ionisation potential

 $\Phi:\mbox{Work function of emitter}$

V : El. Potential c : constant


Ions are ejected from the surface



Field emission (electron, ion) microscopy FEM, FIM

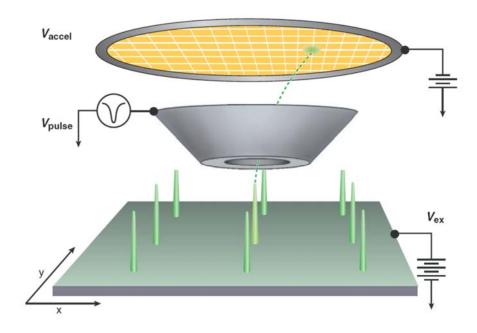
Field ion micrograph from a [100] oriented specimen of Pt 17 at.% Rh catalyst material imaged in Ne gas with an applied voltage of approx. 10 kV at 80K. Each of the bright spots in the left picture is the image of an individual atom on the specimen surface.

Ball model . The prominent sites, representing kink site atoms on the surface are shown in white. These form a serie of concentric rings similar to those seen in the field-ion picture

2021

Experimental Methods in Physics

Marco Cantoni



Atom probe Tomography

- Use the sample atoms as imaging ions....!
 - APFIM: Atom Probe Field Ion Microscopy
- Measure the Time Of Flight (TOF), to determine the mass of the ion...!
 - elemental analysis on atomic level
- Use Laser to assist ablation of ions
 - LAWATAP: Laser Assisted Wide Angle Tomographic Atom Probe
 - Insulating samples become possible

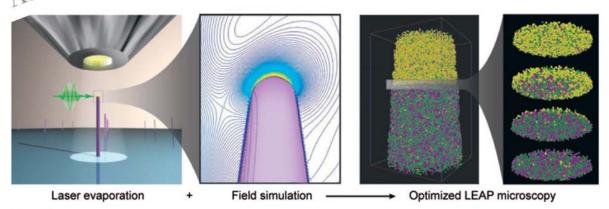
Wide Angle position sensitive detector

Sample needs to have tip shape: metals: etching, insulators: FIB

2021

Experimental Methods in Physics

Marco Cantoni


Three-Dimensional
Three-Dimensional
Three-Dimensional
Tomography:

Atom-Probe Tomography:
David N

Annu. Rev. Mater. Res. 2007.37:127-158

David N. Seidman

Department of Materials Science and Engineering, Northwestern University Center for Atom-Probe Tomography, Northwestern University, Evanston, Illinois 60208-3108; email: d-seidman@northwestern.edu

Figure 2

(Left) An array of microtips sitting on a conducting substrate with green laser light impinging on a single microtip. (Middle) The calculated electric field at a microtip that results from the E-component of the laser beam. Courtesy of Prof. Tamar Seideman (Chemistry Department, Northwestern University). (Right) The results of an analysis of an InAs nanowire grown by the vapor-liquid-solid (VLS) technique.

Detection speed

· Electrical pulsing

The pulse repetition rate is variable in discrete steps from 1 kHz to 250 kHz, and a detection rate of up to 2×10^6 ion min-1 (120×10^6 ion h^{-1}) can be achieved. This implies that a data set containing 10^9 atoms can be obtained in 8 1/3 h from a single cooperative specimen. For electrical pulsing, the full-width half-maximum (FWHM) value of m/ Δ m is 500.

· Laser (picosecond) Pulsing

For the LEAP 3000X Si XTM, the laser pulse repetition rate is variable in steps from 1 kHz to 500 kHz, and a detection rate of up to 5×10^6 ion min-1 (300×10⁶ ion h⁻¹) can be obtained. Therefore, a data set containing 10^9 atoms is attainable from a single very cooperative specimen in 3 1/3 h, which is a factor of 2.5 faster than with electrical pulsing.

2021

Experimental Methods in Physics

Marco Cantoni

Al-2.2 at.% Mg-0.12 at.% Sc alloy

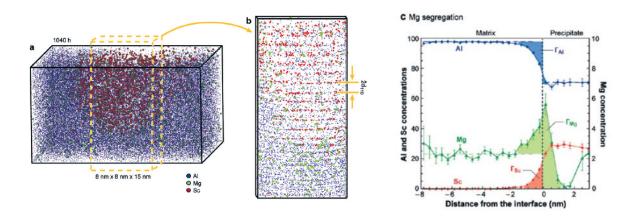
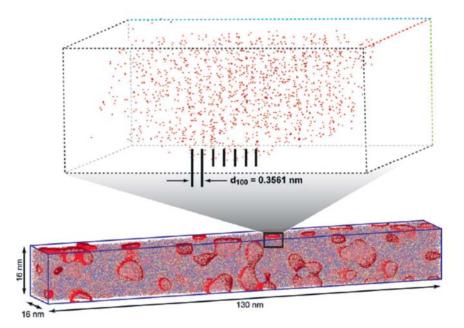



Figure 5

(a) 3-D reconstruction of an analyzed volume from a specimen aged at 300°C for 1040 h showing the isoconcentration surface used to define the α-Al/Al₃Sc heterophase interface. (b) 3-D reconstruction of an Al₃Sc precipitate with a slice taken through the precipitate displaying the {110} planes. (c) Proximity histogram showing Al, Mg, and Sc concentrations from the α-Al/Al₃Sc interface. Data visualization performed using Northwestern University's ADAM 1.5 software package (70). From Reference 86.

Figure 9

APT reconstruction of a Ni-10 at.% Al-8.5 at.% Cr-2 at.% Re alloy in the as-quenched state, which indicates the presence of γ' -precipitates. A 12 at.% Al isoconcentration surface is used to indicate the γ/γ' interfaces. A portion of the γ' -precipitate is magnified, with Al (red), Cr (blue), and Re (orange) atoms shown to display the alternating Al planes in the [100] direction of the ordered L12 structure. Ni atoms are not shown for the sake of clarity. Adapted from Reference 129.

2021 Experimental Methods in Physics Marco Cantoni

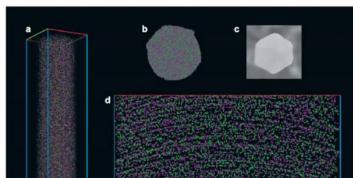
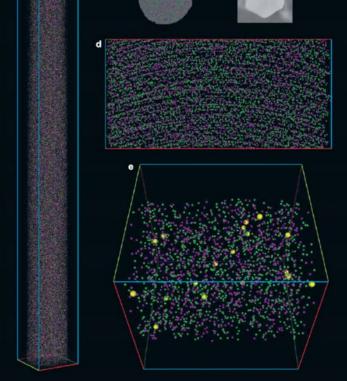



Figure 12
Three-dimensional reconstruction of an InAs nanowire. The sample temperature was at a fixed value between 50 K to 100 K, and the ambient pressure in the LEAP TM comograph was 10^{-10} Torr during its atom-by-atom dissection. (a) Side view (perpendicular to growth axis) of a $25 \times 25 \times 300$ nm³ reconstruction of the nanowire. In, As, and Au atoms are rendered as green, purple, and yellow dost, respectively. Only 5% of the atoms are displayed to provide a sense of depth. (b) A 21×21 nm² end-on view of nanowire reconstruction showing hexagonal faceting. (c) SEM micrograph of an InAs nanowire displaying a hexagonal cross section $(1.7 \, \mu m^2)$. (d) Magnified side view of the nanowire displaying only) atomic planes. The dimensions are 23×14 nm². The slight curvature of the atomic planes is an artifact, the software used for the reconstruction assumes a hemispherical end-form for the field-evaporating nanowires. (c) For clarity, a $27 \times 27 \times 29$ nm² reconstruction of the nanowire with Au atoms is enlarged, and 2% of In and As atoms are shown; the growth axis runs left to right. The 18 Au atoms within the volume correspond to a concentration of 100 atomic parts per million. From Reference 121.

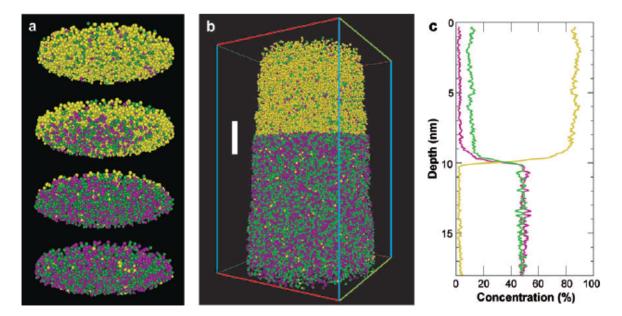


Figure 13

2021

Catalyst nanowires interface in 3-D. (a) One-nm-thick slices through the nanowires over the region defined by the white bar in b. The diameter of the slices is 10 nm. In, As, and Au atoms are rendered as green, purple, and yellow dots, respectively. (b) A $14 \times 14 \times 23$ nm³ reconstruction of an InAs nanowire tip showing a Au catalyst particle at the top. (c) Composition profile in 1-D plotted along the growth axis and through the catalyst/nanowire interface. The plotted composition is a radially average value within a 4-nm-diameter cylinder centered in the middle of the nanowire. From Reference 121.

Experimental Methods in Physics Marco Cantoni